Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
2.
Front Neurosci ; 14: 900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041750

RESUMO

Increasingly, neuroimaging researchers are exploring the use of real-time functional magnetic resonance imaging (rt-fMRI) as a way to access a participant's ongoing brain function throughout a scan. This approach presents novel and exciting experimental applications ranging from monitoring data quality in real time, to delivering neurofeedback from a region of interest, to dynamically controlling experimental flow, or interfacing with remote devices. Yet, for those interested in adopting this method, the existing software options are few and limited in application. This presents a barrier for new users, as well as hinders existing users from refining techniques and methods. Here we introduce a free, open-source rt-fMRI package, the Pyneal toolkit, designed to address this limitation. The Pyneal toolkit is python-based software that offers a flexible and user friendly framework for rt-fMRI, is compatible with all three major scanner manufacturers (GE, Siemens, Phillips), and, critically, allows fully customized analysis pipelines. In this article, we provide a detailed overview of the architecture, describe how to set up and run the Pyneal toolkit during an experimental session, offer tutorials with scan data that demonstrate how data flows through the Pyneal toolkit with example analyses, and highlight the advantages that the Pyneal toolkit offers to the neuroimaging community.

3.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729652

RESUMO

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Prática Psicológica , Adulto , Humanos , Prognóstico
4.
Neuroimage Clin ; 19: 868-875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922575

RESUMO

To benefit from cognitive behavioral therapy (CBT), individuals must not only learn new skills but also strategically implement them outside of session. Here, we tested a novel technique for personalizing CBT skills and facilitating their generalization to daily life. We hypothesized that showing participants the impact of specific CBT strategies on their own brain function using real-time functional magnetic imaging (rt-fMRI) neurofeedback would increase their metacognitive awareness, help them identify effective strategies, and motivate real-world use. In a within-subjects design, participants who had completed a clinical trial of a standardized course of CBT created a personal repertoire of negative autobiographical stimuli and mood regulation strategies. From each participant's repertoire, a set of experimental and control strategies were identified; only experimental strategies were practiced in the scanner. During the rt-fMRI neurofeedback session, participants used negative stimuli and strategies from their repertoire to manipulate activation in the anterior cingulate cortex, a region implicated in emotional distress. The primary outcome measures were changes in participant ratings of strategy difficulty, efficacy, and frequency of use. As predicted, ratings for unscanned control strategies were stable across observations, whereas ratings for experimental strategies changed after neurofeedback. At follow-up one month after the session, efficacy and frequency ratings for scanned strategies were predicted by neurofeedback during the rt-fMRI session. These results suggest that rt-fMRI neurofeedback created a salient and durable learning experience for patients, extending beyond the scan session to guide and motivate CBT skill use weeks later. This metacognitive approach to neurofeedback offers a promising model for increasing clinical benefits from cognitive behavioral therapy by personalizing skills and facilitating generalization.


Assuntos
Encéfalo/diagnóstico por imagem , Terapia Cognitivo-Comportamental/métodos , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/terapia , Neurorretroalimentação/métodos , Adulto , Encéfalo/fisiopatologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
5.
Neuron ; 89(6): 1331-1342, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26948894

RESUMO

Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning.


Assuntos
Adaptação Fisiológica/fisiologia , Cognição/fisiologia , Aprendizagem/fisiologia , Neurorretroalimentação/métodos , Área Tegmentar Ventral/fisiologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Generalização Psicológica , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Motivação , Rede Nervosa/irrigação sanguínea , Rede Nervosa/fisiologia , Núcleo Accumbens/irrigação sanguínea , Núcleo Accumbens/fisiologia , Oxigênio/sangue , Recompensa , Área Tegmentar Ventral/irrigação sanguínea , Adulto Jovem
6.
Front Behav Neurosci ; 3: 21, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19753142

RESUMO

To represent value for learning and decision making, the brain must encode information about both the motivational relevance and affective valence of anticipated outcomes. The nucleus accumbens (NAcc) and ventral tegmental area (VTA) are thought to play key roles in representing these and other aspects of valuation. Here, we manipulated the valence (i.e., monetary gain or loss) and personal relevance (i.e., self-directed or charity-directed) of anticipated outcomes within a variant of the monetary incentive delay task. We scanned young-adult participants using functional magnetic resonance imaging (fMRI), utilizing imaging parameters targeted for the NAcc and VTA. For both self-directed and charity-directed trials, activation in the NAcc and VTA increased to anticipated gains, as predicted by prior work, but also increased to anticipated losses. Moreover, the magnitude of responses in both regions was positively correlated for gains and losses, across participants, while an independent reward-sensitivity covariate predicted the relative difference between and gain- and loss-related activation on self-directed trials. These results are inconsistent with the interpretation that these regions reflect anticipation of only positive-valence events. Instead, they indicate that anticipatory activation in reward-related regions largely reflects the motivational relevance of an upcoming event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...